check
Publications | Lerner lab

Publications

Submitted
Drori, P. et al. Rapid and specific detection of single nanoparticles and viruses in microfluidic laminar flow via confocal fluorescence microscopy . bioRxiv (Submitted).at <> Publisher's VersionAbstract
Mainstream virus detection relies on the specific amplification of nucleic acids via polymerase chain reaction, a process that is slow and requires extensive laboratory expertise and equipment. Other modalities, such as antigen-based tests, allow much faster virus detection but have reduced sensitivity. In this study, we report the development of a flow virometer for the specific and rapid detection of single nanoparticles based on confocal microscopy. The combination of laminar flow and multiple dyes enable the detection of correlated fluorescence signals, providing information on nanoparticle volumes and specific chemical composition properties, such as viral envelope proteins. We evaluated and validated the assay using fluorescent beads and viruses, including SARS-CoV-2. Additionally, we demonstrate how hydrodynamic focusing enhances the assay sensitivity for detecting clinically-relevant virus loads. Based on our results, we envision the use of this technology for clinically relevant bio-nanoparticles, supported by the implementation of the assay in a portable and user-friendly setup.
Harris, P.D., Ben Eliezer, N., Keren, N. & Lerner, E. Multiparameter-based photosynthetic state transitions of single phytoplankton cells . bioRxiv (Submitted).at <> Publisher's VersionAbstract
Fluorescence emitted by light-harvesting pigments responds to the physiological state of phytoplankton. We developed a time resolved system to monitor fluorescence from single cells. It captures multiple spectral channels and fluorescence lifetimes, eliminating ensemble averaging of bulk experiments. Tracking the diurnal cycles of three phytoplankton species, we uncover each species segregation into multiple distinct cell states, a feature previously hidden in bulk measurements. We also tested their response to light-intensity perturbations, and determined each species unique acclimation strategy involving transition between distinct cell subpopulations. This approach will be useful for characterizing natural phytoplankton population responses to environmental conditions, aiming for a better understanding of their acclimation strategies and the effects of global climate changes.
Munoz, G.Gabriel Mo et al. Single-molecule detection and super-resolution imaging with a portable and adaptable 3D-printed microscopy platform (Brick-MIC). bioRxiv (Submitted).at <> Publisher's VersionAbstract
Over the past decades, single-molecule spectroscopy and super-resolution microscopy have advanced significantly and by now represent important tools for life science research. Despite rapid progress and ongoing development, there is a growing gap between the state-of-the-art and what is accessible to non-optics specialists, e.g., biologists, biochemists, medical researchers, and labs with financial constraints. To bridge this gap, we introduce Brick-MIC, a versatile and affordable open-source 3D-printed micro-spectroscopy and imaging platform. Brick-MIC enables the integration of various fluorescence imaging techniques with single-molecule resolution within a single platform and enables exchange between different modalities within minutes. In this work, we present three variants of Brick-MIC that facilitate single-molecule fluorescence detection, fluorescence correlation spectroscopy and super-resolution imaging. With the three variants, we were able to observe conformational changes and absolute inter-dye distances in single macromolecules and perform single-molecule localization microscopy (STORM and PAINT) of DNA origami nanostructures. Detailed descriptions of the hardware and software components, as well as data analysis routines are provided, to allow non-optics specialist to operate their own Brick-MIC with minimal effort and investments. We foresee that our affordable, flexible, and open-source Brick-MIC platform will be a valuable tool for many laboratories worldwide.
Razvag, Y., Drori, P., Klemfner, S., Meshorer, E. & Lerner, E. FRET-sensitized acceptor emission localization (FRETsael) – nanometer localization of biomolecular interactions using fluorescence lifetime imaging. bioRxiv (Submitted).at <> Publisher's VersionAbstract
Super-resolution light microscopy techniques facilitate the observation of nanometer-size biomolecules, which are 1-2 orders of magnitude smaller than the diffraction limit of light. Using super-resolution microscopy techniques it is possible to observe fluorescence from two biomolecules in close proximity, however not necessarily in direct interaction. Using FRET-sensitized acceptor emission localization (FRETsael), we localize biomolecular interactions exhibiting FRET with nanometer accuracy, from two color fluorescence lifetime imaging data. The concepts of FRETsael were tested first against simulations, in which the recovered localization accuracy is 20-30 nm for true-positive detections of FRET pairs. Further analyses of the simulation results report the conditions in which true-positive rates are maximal. We then show the capabilities of FRETsael on simulated samples of Actin-Vinculin and ER-ribosomes interactions, as well as on experimental samples of Actin-Myosin two-color confocal imaging. Conclusively, the FRETsael approach paves the way towards studying biomolecular interactions with improved spatial resolution from laser scanning confocal two color fluorescence lifetime imaging.
Joron, K., Zamel, J., Kalisman, N. & Lerner, E. Evidence for a compact σ70 conformation in vitro and in vivo. (Submitted).at <> Publisher's VersionAbstract
Initiation of transcription in Escherichia coli is facilitated by promoter specificity factors, such as σ70, which bind promoter dsDNA when in complex with RNA polymerase (RNAP), in which it is in an extended conformation with solvent-exposed DNA-interacting residues. If so, what in the structure of apo-σ70 prevents binding to promoter dsDNA at high affinity? By performing cross-linking mass spectrometry (CL-MS) and integrative structural modelling we elucidate structure models of apo-σ70 that exhibit burial of almost all DNA-binding residues. In vivo CL-MS detects crosslinks unique to the compact fold of apo-σ70 that occur at stationary growth phase. Conclusively, we provide structural information to show that the high affinity DNA-binding capabilities of apo-σ70 are conformationally-inhibited and can be activated mostly in the context of transcription.
2023
Ploetz, E. et al. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods and Applications in Fluorescence 12, 012001 (2023). Publisher's VersionAbstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Joron, K. et al. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nature Communications 14, 4885 (2023). Publisher's VersionAbstract
Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.
Zamel, J. et al. Structural and Dynamic Insights Into α-Synuclein Dimer Conformations. Structure 31, 411-423 (2023). Publisher's VersionAbstract
Parkinson's disease is associated with the aggregation of the protein α-synuclein. While αsynuclein can exist in multiple oligomeric states, the dimer has been a subject of extensive debates. Here, using an array of biophysical approaches, we demonstrate that α-synuclein in vitro exhibits primarily a monomer-dimer equilibrium in nanomolar concentrations and up to a few micromolars. We then use spatial information from hetero-isotopic crosslinking mass spectrometry experiments as restrains in discrete molecular dynamics simulations to obtain the ensemble structure of dimeric species. Out of eight structural subpopulations of dimers, we identify one that is compact, stable, abundant, and exhibits partially exposed β-sheet structures. This compact dimer is the only one where the hydroxyls of tyrosine 39 are in proximity that may promote dityrosine covalent linkage upon hydroxyl radicalization, which is implicated in α-synuclein amyloid fibrils. We propose that this α-synuclein dimer features etiological relevance to Parkinson’s disease.
2022
Drori, P., Razvag, Y. & Lerner, E. Biomolecular interactions in laser scanning confocal microscope at nanometer resolution. 63/368,198, (2022).Abstract
Filed Jul. 12, 2022
Harris, P.D. & Lerner, E. Identification and Quantification of Within-Burst Dynamics in Singly-Labeled Single-Molecule Fluorescence Lifetime Experiments. Biophysical Reports 2, 100071 (2022). Publisher's VersionAbstract
Single-molecule spectroscopy has revolutionized molecular biophysics and provided means to probe how structural moieties within biomolecules spatially reorganize at different timescales. There are several single-molecule methodologies that probe local structural dynamics in the vicinity of a single dye-labeled residue, which rely on fluorescence lifetimes as readout. Nevertheless, an analytical framework to quantify dynamics in such single-molecule single dye fluorescence bursts, at timescales of microseconds to milliseconds, has not yet been demonstrated. Here, we suggest an analytical framework for identifying and quantifying within-burst lifetime-based dynamics, such as conformational dynamics recorded in single-molecule photo-isomerization-related fluorescence enhancement. After testing the capabilities of the analysis on simulations, we proceed to exhibit within-burst millisecond local structural dynamics in the unbound α-synuclein monomer. The analytical framework provided in this work paves the way for extracting a full picture of the energy landscape for the coordinate probed by fluorescence lifetime-based single-molecule measurements.
Drori, P., Razvag, Y., Moya, G., Cordes, T. & Lerner, E. Flow virometer for rapid detection of intact viruses. WO2022172208A1, (2022). Publisher's VersionAbstract
Filed Feb. 11, 2022
Harris, P.D. et al. Multi-parameter photon-by-photon hidden Markov modeling. Nature Communications 13, 1000 (2022). Publisher's VersionAbstract
Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical approach for studying conformational dynamics in biomacromolecules. Photon-by-photon hidden Markov modeling (H2MM) is an analysis tool that can quantify FRET dynamics of single biomolecules, even if they occur on the sub-millisecond timescale. However, dye photophysical transitions intertwined with FRET dynamics may cause artifacts. Here, we introduce multi-parameter H2MM (mpH2MM), which assists in identifying FRET dynamics based on simultaneous observation of multiple experimentally-derived parameters. We show the importance of using mpH2MM to decouple FRET dynamics caused by conformational changes from photophysical transitions in confocal-based smFRET measurements of a DNA hairpin, the maltose binding protein, MalE, and the type-III secretion system effector, YopO, from Yersinia species, all exhibiting conformational dynamics ranging from the sub-second to microsecond timescales. Overall, we show that using mpH2MM facilitates the identification and quantification of biomolecular sub-populations and their origin.
2021
Zaer, S. & Lerner, E. Utilizing Time-Resolved Protein-Induced Fluorescence Enhancement to Identify Stable Local Conformations One α-Synuclein Monomer at a Time. Journal of Visualized Experiments e62655 (2021).at <> Publisher's VersionAbstract
Using spectroscopic rulers to track multiple conformations of single biomolecules and their dynamics have revolutionized the understanding of structural dynamics and its contributions to biology. While the FRET-based ruler reports on inter-dye distances in the 3-10 nm range, other spectroscopic techniques, such as protein-induced fluorescence enhancement (PIFE), report on the proximity between a dye and a protein surface in the shorter 0-3 nm range. Regardless of the method of choice, its use in measuring freely-diffusing biomolecules one at a time retrieves histograms of the experimental parameter yielding separate centrally-distributed sub-populations of biomolecules, where each sub-population represents either a single conformation that stayed unchanged within milliseconds, or multiple conformations that interconvert much faster than milliseconds, and hence an averaged-out sub-population. In single-molecule FRET, where the reported parameter in histograms is the inter-dye FRET efficiency, an intrinsically disordered protein, such as the α-Synuclein monomer in buffer, was previously reported as exhibiting a single averaged-out sub-population of multiple conformations interconverting rapidly. While these past findings depend on the 3-10 nm range of the FRET-based ruler, we sought to put this protein to the test using single-molecule PIFE, where we track the fluorescence lifetime of site-specific sCy3-labeled α-Synuclein proteins one at a time. Interestingly, using this shorter range spectroscopic proximity sensor, sCy3-labeled α-Synuclein exhibits several lifetime sub-populations with distinctly different mean lifetimes that interconvert in 10-100 ms. These results show that while α-Synuclein might be disordered globally, it nonetheless attains stable local structures. In summary, in this work we highlight the advantage of using different spectroscopic proximity sensors that track local or global structural changes one biomolecule at a time.
jove-protocol-62655-utilizing-time-resolved-protein-induced-fluorescence-enhancement-to.pdf
Chen, J. et al. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. Structure 29, (2021). Publisher's VersionAbstract
The intrinsically disordered protein, α-synuclein, implicated in synaptic vesicle homeostasis and neurotransmitter release, is also associated with several neurodegenerative diseases. The different roles of α-synuclein are characterized by distinct structural states (membrane-bound, dimer, tetramer, oligomer, and fibril), which are originated from its various monomeric conformations. The pathological states, determined by the ensemble of α-synuclein monomer conformations and dynamic pathways of interconversion between dominant states, remain elusive due to their transient nature. Here, we use inter-dye distance distributions from bulk time-resolved Forster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.
Lerner, E. et al. The FRET-based structural dynamics challenge – community contributions to consistent and open science practices. eLife 10, e60416 (2021). Publisher's VersionAbstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current ‘state of the art’ from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of ‘soft recommendations’ about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage ‘open science’ practices.
elife-60416-v2.pdf 60416-cover-a4.pdf
2019
Hagai, D. & Lerner, E. Systematic Assessment of Burst Impurity in Confocal-Based Single-Molecule Fluorescence Detection Using Brownian Motion Simulations. Molecules 24, 2557 (2019). Publisher's VersionAbstract
Single-molecule fluorescence detection (SMFD) experiments are useful in distinguishing sub-populations of molecular species when measuring heterogeneous samples. One experimental platform for SMFD is based on a confocal microscope, where molecules randomly traverse an effective detection volume. The non-uniformity of the excitation profile and the random nature of Brownian motion, produce fluctuating fluorescence signals. For these signals to be distinguished from the background, burst analysis is frequently used. Yet, the relation between the results of burst analyses and the underlying information of the diffusing molecules is still obscure and requires systematic assessment. In this work we performed three-dimensional Brownian motion simulations of SMFD, and tested the positions at which molecules emitted photons that passed the burst analysis criteria for different values of burst analysis parameters. The results of this work verify which of the burst analysis parameters and experimental conditions influence both the position of molecules in space when fluorescence is detected and taken into account, and whether these bursts of photons arise purely from single molecules, or not entirely. Finally, we show, as an example, the effect of bursts that are not purely from a single molecule on the accuracy in single-molecule Förster resonance energy transfer measurements.
Segal, M. et al. High-throughput smFRET analysis of freely diffusing nucleic acid molecules and associated proteins. Methods (2019).at <> Publisher's VersionAbstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for nanometer-scale studies of single molecules. Solution-based smFRET, in particular, can be used to study equilibrium intra- and intermolecular conformations, binding/unbinding events and conformational changes under biologically relevant conditions without ensemble averaging. However, single-spot smFRET measurements in solution are slow. Here, we detail a high-throughput smFRET approach that extends the traditional single-spot confocal geometry to a multispot one. The excitation spots are optically conjugated to two custom silicon single photon avalanche diode (SPAD) arrays. Two-color excitation is implemented using a periodic acceptor excitation (PAX), allowing distinguishing between singly- and doubly-labeled molecules. We demonstrate the ability of this setup to rapidly and accurately determine FRET efficiencies and population stoichiometries by pooling the data collected independently from the multiple spots. We also show how the high throughput of this approach can be used o increase the temporal resolution of single-molecule FRET population characterization from minutes to seconds. Combined with microfluidics, this high-throughput approach will enable simple real-time kinetic studies as well as powerful molecular screening applications.
2018
Cיung, S.Y. et al. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase. Nucleic Acid Research (2018).at <> Publisher's VersionAbstract
Previous works have reported significant effects of macromolecular crowding on the structure and behavior of biomolecules. The crowded intracellular environment, in contrast to in vitro buffer solutions, likely imparts similar effects on biomolecules. The enzyme serving as the gatekeeper for the genome, RNA polymerase (RNAP), is among the most regulated enzymes. Although it was previously demonstrated that macromolecular crowding affects association of RNAP to DNA, not much is known about how crowding acts on late initiation and promoter clearance steps, which are considered to be the rate-determining steps for many promoters. Here, we demonstrate that macromolecular crowding enhances the rate of late initiation and promoter clearance using in vitro quenching-based single-molecule kinetics assays. Moreover, the enhancement’s dependence on crowder size notably deviates from predictions by the scaled-particle theory, commonly used for description of crowding effects. Our findings shed new light on how enzymatic reactions could be affected by crowded conditions in the cellular milieu.
Lerner, E., Ingargiola, A. & Weiss, S. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. J Chem Phys 148, 123315 (2018). bioRxiv pre-print versionAbstract
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few “structural snapshots” along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique’s temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
Ingargiola, A., Weiss, S. & Lerner, E. Monte-Carlo Diffusion-Enhanced Photon Inference: Distance Distributions And Conformational Dynamics In Single-Molecule FRET. J Phys Chem B 122, 11598–11615 (2018). bioRxiv pre-print versionAbstract
Single-molecule Förster Resonance Energy Transfer (smFRET) is utilized to study the structure and dynamics of many bio-molecules, such as proteins, DNA and their various complexes. The structural assessment is based on the well-known Förster relationship between the measured efficiency of energy transfer between a donor (D) and an acceptor (A) dye and the distance between them. Classical smFRET analysis methods called photon distribution analysis (PDA) take into account photon shot-noise, D-A distance distribution and, more recently, interconversion between states in order to extract accurate distance information. It is known that rapid D-A distance fluctuations on the order of the D lifetime (or shorter) can increase the measured mean FRET efficiency and thus decrease the estimated D-A distance. Nonetheless, this effect has been so far neglected in smFRET experiments, potentially leading to biases in estimated distances. Here we introduce a PDA approach dubbed Monte-Carlo-diffusion-enhanced photon inference (MC-DEPI). MC-DEPI recolor detected photons of smFRET experiments taking into account dynamics of D-A distance fluctuations, multiple interconverting states and photo-blinking. Using this approach, we show how different underlying conditions may yield identical FRET histograms and how the additional information from fluorescence decays helps distinguishing between the different conditions. We also introduce a machine learning fitting approach for retrieving the D-A distancedistribution, decoupled from the above-mentioned effects. We show that distance interpretation of smFRET experiments of even the simplest dsDNA is nontrivial and requires decoupling the effects of rapid D-A distance fluctuations on FRET in order to avoid systematic biases in the estimation of the D-A distance distribution.